Arricchimento organico e meiofauna bentica in un ambiente marino costiero (*)

MAURO COTTIGLIA (**), MARIA LAURA MASALA (**), RITA CARLA MONTICELLI (**)

Abstract. In a marine bay of Corsica, during a study concerning fish farming impact of floating cages, the effects of organic releases are compared to specific diversity and benthic meiofauna communities abundance existing at different distances from that implant. Regarding many systematic Groups, values of these demographic characteristics are highlighted to be positively correlated with bottom organic substance concentration. Biological indexes seem not to indicate a negative effect of those releases on meiofauna. Nevertheless other sources of organic substance, into the bay, can be hypothesize.

Riassunto. In una baia marina della Corsica, nello studio di impatto di una piscicoltura in gabbie sospese, si correlano gli effetti dei rilasci organici alla diversità specifica ed all'abbondanza delle comunità della meiofauna bentica esistenti a diverse distanze da tale impianto. Si evidenzia come, per molti Gruppi sistematici, i valori di queste caratteristiche demografiche sono correlati positivamente con la concentrazione della sostanza organica sedimentata. Gli indici biologici non indicherebbero un effetto negativo, sulla meiofauna, dei rilasci stessi. Si ipotizzano, tuttavia, altre fonti di sostanza organica all'interno della baia.

Keywords: marine ecology, floating cages aquaculture, organic pollution, meiofauna.

INTRODUZIONE

In una nota precedente [1] si è trattato dell'impatto ambientale, sia sulla libera acqua che sui sedimenti, da parte di un impianto di piscicoltura, in gabbie sospese, di *Dicentrarchus labrax* (L.) e *Sparus aurata* L. realizzato nella baia di Figari (Corsica meridionale). Questa è una profonda insenatura (3,5 km) nella cui parte più interna, ospitante anche un porto turistico, sfocia il R.Carcerone dal carico organico e di fertilizzanti non trascurabile.

^(*) Presentato il 22/01/01.

^(**) Dip. Biologia Animale ed Ecologia, Università degli Studi di Cagliari, Viale Poetto 1, Cagliari.

In un altro lavoro [2] si è curata l'influenza sulla *Posidonia oceanica* (L.) Delile dei rilasci dello stesso impianto. In quest'ultimo lavoro si è colta soprattutto la differenza tra la situazione in alcune stazioni della baia e quella in una zona testimone (isolotti di Les Moines) non influenzata da scarichi. Tale stazione è sita nel canale di Bonifacio, a circa 12 km dall'imboccatura della baia in questione.

Nella presente nota si offrono i risultati di un ulteriore studio avente per oggetto i rapporti tra la bentofauna e la concentrazione della sostanza organica nei sedimenti di stazioni fissate nella baia di Figari, a diversa distanza dal centro dell'impianto di cui sopra.

È noto [3,4] che la struttura delle comunità della fauna bentica è una buona indicatrice delle alterazioni subite dal substrato dovute ai rilasci di allevamenti di pesci in gabbie sospese. All'interno della bentofauna, abbiamo considerato la sola meiofauna per la maggior facilità di prelievo e per la frequente alta densità delle popolazioni.

MATERIALI E METODI

Lo studio è stato condotto nel giugno del 1999, in seno ad una ricerca INTERREG. Durante l'indagine, la biomassa ittica in allevamento si aggirava intorno a 35 t. L'alimento dei pesci era costituito da *pellet* con una razione giornaliera di circa 350 kg. I pellet, per dichiarazione del produttore, contenevano, oltre a vitamine, 46% di materiale proteico grezzo, 20% di lipidi, 1,5% di cellulosa e 9% di ceneri. Nostre misure hanno messo in evidenza i seguenti contenuti percentuali: sostanza organica 90,33, ceneri 9,67.

Lungo l'asse NW-SE della baia, in funzione dei risultati delle misure correntometriche, sono state fissate 7 stazioni delle quali 3 nell'area delle gabbie (una centrale e due a 25 m da questa), una verso terra a 80 m da quella centrale e tre distanti da quest'ultima rispettivamente a 90, 350 e 1050 m; le ultime due, la 6ª e la 7ª, avevano significato di relativo *blanc* (cfr. Fig. 1).

In tutte le stazioni sono stati eseguiti campionamenti di sedimento mediante carotatore di 2,0 cm di diametro interno, fino a circa 10 cm dalla superficie del sedimento. Del campione sono stati considerati il 1°cm, il 2°più il 3° e il 4°più il 5°; in questi sono state effettuate, tra l'altro, misure relative al fosforo totale seguendo la tecnica riportata nella GAZZETTA UFFICIALE ITALIANA [5] ed alla sostanza organica (misure ponderali e combustione a 450°C). Per queste indagini non è stata eseguita alcuna ulteriore selezione e quindi il sedimento campionato è stato considerato in toto, esclusi i macrodetriti organici.

La misura del potenziale di ossido riduzione (Eh) del primo centimetro di sedimento è stata eseguita *in situ*.

Il particellato in via di sedimentazione è stato raccolto mediante «trappole» ancorate per 24 ore sul substrato delle diverse stazioni [1]. Su questo materiale sono stati misurati il TSM, il TIM ed il TPOM. Su quest'ultimo sono stati determinati i principali componenti biochimici quali: proteine (metodo di HARTREE [6]), lipidi (metodo di BLIGH e DYER

[7]) e carboidrati (metodo di DUBOIS [8]), sempre previo filtraggio del campione su filtri Whatman GF/F di 47 mm di diametro, precedentemente calcinati. Ogni analisi è stata ripetuta ed i risultati mediati.

La meiofauna bentica è stata raccolta mediante carotatore con diametro interno di 6,4 cm. Per la sua separazione, il campione di sedimento (fissato in formalina al 4%) è stato suddiviso in sezioni secondo lo schema seguente:

- 1° mezzo centimetro
- 2° mezzo centimetro
- 2°centimetro
- 3° e 4°centimetro:
- 5° e 6° centimetro.

La cernita è stata effettuata con setacci di 0,5 mm e 63 µm di lato maglia raccogliendo gli organismi trattenuti da quest'ultima, trattenendo così la sola meiofauna [9, 10, 11]. Successivamente si è proceduto alla separazione di questa dal restante sedimento per differenza di gravità mediante aggiunta di ludox [10] seguita da centrifugazione e recupero del sovranatante. Il campione così ottenuto è stato colorato con Rosa di Bengala [10] e conservato ancora in formalina. È seguita la determinazione, il conteggio e la misura della biomassa fresca.

Il numero dei diversi organismi è stato riportato sia a un volume standard (10 cm³) di ciascun strato di carota e sia a un volume complessivo, sempre standard, di 193 cm³ corrispondente ai primi 6 cm di altezza della carota.

Sono stati inoltre ottenuti gli indici di:

- diversità di Shannon-Wiener (H')
- evenness o di uguaglianza (E)
- ricchezza sec. CHAO [12]

Per le tecniche qui non specificate si rimanda a [1].

RISULTATI

Condizioni ambientali generali

Nel substrato dell'area indagata era presente la *Posidonia oceanica*, ad eccezione di quello immediatamente sottostante le gabbie d'allevamento ove non era restato che il vecchio tassone [2]. Tale zona era ricoperta da uno spesso strato di limi con impianti di fitte colonie del Briozoo *Zoobothryon verticillatum* (Delle Chiaje), presenti anche nella stazione 1. Negli spazi *intermatte*, come anche nel profondo canalone a substrato sabbiofangoso, che percorre longitudinalmente la baia, sono stati notati importanti accumuli di resti di posidonia.

I valori di salinità, di temperatura e di pH delle acque libere [1] non si discostavano da quelli stagionali caratteristici di un acqua costiera mediterranea. I valori della percentuale di saturazione dell'ossigeno [1] sono stati pari a 100 o leggermente superiori; deficit di saturazione (2,6-4,5%) furono rinvenuti presso il fondo della stazione 1,

sottocorrente rispetto all'impianto, e nella superficie della 2 e della 3. I valori di torbidità [1], in condizioni di modesta ondazione, hanno oscillato in tutta la baia tra 3,4 e 5,5 FTU; al centro dell'impianto, la media di questi valori (3,62) è risultata leggermente inferiore a quella calcolata nella stazione 7 (3,97 FTU). Causa la scarsa profondità, la misura del disco Secchi si è dimostrata essere un parametro non indicativo. L'andamento della clorofilla *a* [1] non ha evidenziato significativi incrementi nell'area dell'impianto; qui le concentrazioni, comunque, sono risultate inferiori a quelle misurate nella stazione distale 7.

In tutta la baia le quantità dei nutrienti non sono irrilevanti. I *range* delle relative concentrazioni, espresse in $\mu g/l$, sono risultati i seguenti:

_	P-PO ₄	1,2-8,6
_	P Totale	10,3-47,2
_	N-NH _{3,4}	9,19-47,97
	N-NO ₂	0,07-2,58
_	N-NO ₃	0,03-38,92
	N Totale	860-6054

Non sempre le punte massime corrispondevano all'area ove erano inserite le gabbie. È probabile quindi che il canalone centrale convogliasse verso l'esterno acque usate, non tutte, però, attribuibili all'impianto di acquacoltura.

Essendo noto che la principale risorsa trofica, diretta o indiretta, per la meiofauna è il particellato sospeso in sedimentazione, abbiamo puntato la nostra attenzione anche su questo. La quantità di POM che ha sedimentato nell'arco di 24 ore sull'unità di substrato (Tab. 1) ha variato notevolmente in funzione della posizione delle stazioni e non sempre in funzione diretta della distanza dalle gabbie.

È evidente che questi valori dipendono dal variare, nell'arco delle 24 ore, delle caratteristiche delle correnti e probabilmente del valore dimensiometrico e del peso specifico dei rilasci solidi dell'impianto, ma, presumibilmente, anche da altre fonti, non escluso lo stesso substrato per rimaneggiamenti dovuti a *bioturbation* o ad altra cause.

I valori delle caratteristiche biochimiche del particellato organico in sedimentazione (Tab. 2), essendo nettamente inferiori, per le proteine ed i lipidi, a quelle indicate mangimificio per i pellet usati nell'impianto, indicano un'elevata efficienza di sfruttamento e di assimilazione da parte dei pesci allevati o un selettivo consumo da parte del benthos.

Condizioni del substrato

I sedimenti di tutta la baia sono ricchi di sostanza organica (Tab. 3), importante fattore per la presenza qualitativa e quantitativa della meiofauna. L'origine di questo materiale è probabilmente riconducibile anche ad altre fonti oltre che all'impianto di piscicoltura. I valori estremi della sostanza organica, a livello dei vari strati dei primi 5 centimetri, vanno da 94,1 a 391,31 g/kg. Le stazioni ove questa è maggiormente rappresentata sono quelle corrispondenti all'impianto; tra queste, la 2ª è la meno interessata per probabili

correnti profonde dominanti o per la morfologia del fondo. Riportando i valori delle diverse stazioni a quello medio (257,44 g/kg) dell'area delle gabbie (stazioni 2, 3 e 4), si sono ottenuti le seguenti percentuali:

Stazione	%
1	79,28
5	73,45
6	52,78
7	62,06

È facile rilevare il sensibile incremento di sostanza organica verificantesi nell'area delle gabbie. Degno di nota è il valore della stazione 1 ove, nonostante la relativa notevole distanza dall'impianto, per particolari andamenti delle correnti prevalenti, tendono ad accumularsi quantità di materiale organico non inferiore a quelli rinvenibili nella stazione 2, la più prossima all'impianto.

I valori estremi di concentrazione trovati nella baia di Figari si scostano marcatamente da quelli misurati nei primi 5 cm di sedimento in altre aree a prateria di posidonia, con profondità dello stesso ordine di grandezza, come⁽¹⁾, in Sardegna, in aree scarsamente interessate da scarichi, del Golfo di Olbia, da 47 a 228 g/kg e del Golfo di Oristano da 14 a 35. Valori non troppo distanti da quelli colti nella baia corsa sono stati invece ottenuti nella baia sarda di S. Antioco, interessata da scarichi di urbani e di impianti di piscicoltura in vasche; qui la concentrazione della sostanza organica ha variato tra 77 e 367 g/kg del totale del sedimento secco raccolto in seno al posidonieto.

Naturalmente queste concentrazioni sono legate, oltre che al particellato sospeso ed agli stessi detriti di posidonia, anche alla conformazione del substrato ed al grado di protezione goduto dalla superficie di quest'ultimo nei confronti dei movimenti delle acque.

Anche nel caso del fosforo, le concentrazioni nelle diverse stazioni sono, nei diversi strati, molto variabili (da 0,10 a 6,40 g/kg d.w.) e quelle medie maggiori sono state misurate nell'area-impianto con valore medio 2,96 g/kg d.w. Nei confronti di questa concentrazione, quelle delle restanti stazioni tendono a diminuire in funzione della distanza dall'impianto stesso.

I valori dell'azoto totale sono risultati estremamente irregolari e non significativi nei riguardi del gradiente spaziale facente capo all'impianto.

Per quanto riguarda i composti reattivi del fosforo e dell'azoto dell'acqua interstiziale, si rimanda a [2].

Meiofauna

I valori di densità specifica, relativi al volume di sedimento (193 cm³) corrispondente ai primi 6 centimetri di altezza della carota, sono riportati nella Tab. 4. Poiché anche nei

⁽¹⁾ Dati non pubblicati.

centimetri più profondi abbiamo rinvenuto, sia pur in quantità più modeste, individui di diversi Gruppi, si riportano, nelle Tabb. 5÷11, i valori di distribuzione spaziale delle popolazioni. Questi confermerebbero la prevalente etologia alimentare di *epistrate feeders* dei Copepodi [13] cui si unirebbe una certa ossifilia, maggiore di quella dei Nematodi.

Nematodi, Policheti e Copepodi sono stati i gruppi maggiormente rappresentati (Tab. 12) essendo, mediamente e rispettivamente, 66,1, 15,03 e 14,07% del totale degli individui (Tab. 13).

Dalla Tab. 12 risulterebbe evidente come tra le popolazioni, soprattutto tra quelle di alcuni importanti Gruppi, si verifichi una marcata tendenza ad essere più numerose nelle stazioni dell'impianto o in quelle da questo più interessate e comunque con sedimenti più ricchi di sostanza organica. Al fine di chiarire il problema, sono state effettuate le analisi di correlazione di Spearman tra sostanza organica presente nei sedimenti (media dei primi 5 cm) e numero di individui dei diversi gruppi contenuti nei primi 6 cm lineari di carota. Sono stati esclusi i parametri clorofilla planctonica e POM a causa della variabilità delle condizioni delle masse d'acqua. I coefficienti di correlazione ottenuti sono riportati nella seguente tabella:

Chinorinchi	0,02	ns
Nematodi	0,29	ns
Policheti	0,77	**
Gasteropodi	0,07	ns
Ostracodi	0,63	**
Copepodi	0,23	ns
Naupli	0,29	ns
Cumacei	0,43	*
Tanaidacei	-0,61	**
Isopodi	0,07	ns
Anfipodi	0,35	*
Acari	0,05	ns
Sipunculidi	0,09	ns
Meiofauna totale	0,37	*

ns: non significativo;

È evidente come per i Policheti, Ostracodi, Cumacei, Tanaidacei e Anfipodi la correlazione sia significativa, mentre i Nematodi ed altri Gruppi parrebbero essere slegati dalla concentrazione della sostanza organica; tutto ciò è contrario a quanto riportato da alcuni Autori [14] o concorda con quanto notato da altri [15].

^{*} probabilmente significativo;

^{**} significativo.

Considerando la meiofauna nel suo totale questa è sempre correlata positivamente alla concentrazione di sostanza organica.

Di norma, ad alte concentrazioni di sostanza organica nel substrato corrisponde un'alterazione delle caratteristiche di base di quest'ultimo, manifestantesi, ad esempio, con elevati valori negativi dell'Eh che, in questo caso [1], non sono, però, tali da indicare situazioni particolarmente compromesse, pur evidenziando alcune irregolarità nella distribuzione spaziale.

L'indice di Shannon-Wiener (H'), con valori sempre maggiori di 3, indicherebbe un inquinamento scarso o nullo in tutte le stazioni [16]. Nelle stesse stazioni, i valori dell'indice di uguaglianza o di ripartizione (E) non evidenziano fenomeni di dominanza tra le specie.

Nella stazione 3, centrale rispetto all'intero impianto e la più ricca di sostanza organica, l'indice di ricchezza di specie (Chao-1) è il più alto.

I rapporti tra concentrazione di sostanza organica, ricchezza di specie e numero di individui sono illustrati nella Fig. 2 ove, nell'ascissa, anziché le stazioni, sono state riportate le distanze dal centro del vivaio, fatto zero, indicando con segno negativo le distanze comprese nel tratto impianto- costa più prossima.

Stante la significatività della correlazione su riportata tra concentrazioni di sostanza organica, numero di specie e di individui, è lecito pensare che, entro i limiti dei valori trovati, la sostanza organica dei sedimenti della baia di Figari svolga un ruolo positivo. Va tuttavia dichiarato che gran parte delle specie identificate sono anche «salmastre» e come tali «resistenti». Riteniamo che il R. Carcerone sia almeno in parte responsabile del prevalere delle specie «anche salmastre» nella meiofauna studiata, infatti, già nell'ottobre del 1998 la salinità variava nella baia tra 37,69 e 37,92 contro 38,14 e 38,52 del giugno del 1999.

Stazione	H'	E	Chao-1	Sost. Org. 5 cm
1	3,5177	0,997544	42,1	207,94
2	3,6216	1,002958	44,6	189,34
3	3,5585	0,958242	77,1	282,36
4	3,0755	0,980866	27,5	247,36
5	3,5638	1,121378	28,5	202,52
6	3,1154	1,077854	20,3	122,24
7	3,4447	1,131442	29,2	145,22

I valori della biomassa delle singole specie sono riportati, in mg w.w/193 cm³, nella Tab. 14. È evidente come l'andamento dei valori complessivi sia molto simile, nei confronti della concentrazione della sostanza organica, a quello del numero degli individui (Fig. 2).

CONSIDERAZIONI CONCLUSIVE

È evidente da quanto esposto che la gran parte delle specie, prevalentemente definibili «resistenti», tenda ad aumentare il numero dei propri individui via via che ci si accosta all'area dell'impianto, ovvero alle zone di sedimento più ricche di sostanza organica trovate. La stessa tendenza avviene per il numero delle specie. Causa la mancanza di dati storici non si è in grado di affermare se il prevalere delle attuali specie della meiofauna sia dovuto alla scomparsa, almeno per gran parte della baia, di altre più sensibili, sotto l'effetto di rilasci di varia origine.

D'altra parte, sono evidenti le influenze negative dell'impianto esercitate sulla posidonia, specie notevolmente sensibile [2]. Indubbiamente incide sulla fanerogama, oltre all'ombreggiamento da parte delle gabbie, soprattutto l'incremento della frazione granulometrica più modesta del sedimento legata anche ai rilasci ed alle loro successive modificazioni. È probabile, poi, che incida marcatamente l'incremento di torbidità che si verifica, per risospensione di questo materiale, durante le frequenti mareggiate di libeccio il cui effetto aumenterà là ove maggiori saranno le concentrazioni di particellato minuto sedimentato.

Nei confronti della maggior parte delle specie della meiofauna trovate, invece, questi fattori non parrebbero avere effetto negativo, mentre alcuni (sostanza organica e probabilmente la bassa granulometria) potrebbero esercitarne uno positivo.

Il recente impianto di piscicoltura, il deflusso del rio Carcerone [1], con un bacino non inferiore a 40 km² ospitante circa una decina di centri abitati di medie dimensioni, la costruzione e l'attività di un porto, la presenza di impianti turistici e di una non trascurabile agricoltura non possono non aver determinato, nella baia di Figari, importanti variazioni. Tra queste potrebbero elencarsi: la diminuzione del valore granulometrico dei sedimenti sommersi per apporti organici ed inorganici via via crescenti, l'incremento della trofia e, in certi periodi, una certa diminuzione della salinità. È probabile che, a seguito di queste turbative, le precedenti specie dominanti, di grande taglia ed a strategia K, abbiano regredito numericamente a favore di specie di piccole dimensioni (meiofauna), a strategia r ed opportuniste. Le dimensioni delle popolazioni di queste ultime specie, nei diversi punti della baia, sono relativamente molto variabili ed in probabile equilibrio con le risorse disponibili (sostanza organica).

Essendo la comunità relativamente disturbata, la biodiversità potrebbe essere aumentata, specialmente se l'equilibrio competitivo è stato, come si ritiene, mantenuto [17]. Quindi nessuna singola specie è stata capace di trarre vantaggi esclusivi dalla risorsa in questione. Comunque, perdurando queste condizioni, saranno sempre le specie opportuniste ad essere favorite.

La meiofauna non ha potuto quindi che adattarsi assumendo, in buona parte della baia, una tipologia più «estuariale» e forse più «portuale». I valori dei vari parametri rinvenuti nelle stazioni più distali 6 e 7, oltre che l'aspetto generale del canalone percorrente longitudinalmente la baia di Figari, tenderebbero a confortare queste ipotesi.

Si stima che in questo processo, l'impianto di piscicoltura in gabbie, fatta eccezione per le aree più a questo prossime, abbia agito, a causa delle ridotte dimensioni, in misura modesta e non certo molto maggiore dell'effluente fognario non trattato di un piccolo centro rivierasco di qualche migliaio di abitanti.

BIBLIOGRAFIA

- [1] M. COTTIGLIA, M.A. DE MIRANDA, F. LOFFREDO, M.L. MASALA, C. PERGENT MARTINI, G. PERGENT, C. MONTICELLI, *Impatto ambientale da piscicoltura in gabbie galleggianti nella Baia di Figari (Corsica meridionale)*. Atti del Congresso «Environnement et Identité en Mediterranée», DRE, Université de Corse (France) (2000).
- [2] G. CANCEMI, M. COTTIGLIA, G. PERGENT, M.L. MASALA, G. DE FALCO, C. PERGENT-MARTINI, Etude de l'effet d'une ferme aquacole sur un herbier a Posidonia oceanica. Atti del Congresso «Environnement et Identité en Mediterranée», DRE, Université de Corse (France) (2000).
- [3] J.R. Brown, R.J. Gowen, D.S. McLusky, *The effect of salmon farming on the benthos of a Scottish sea loch*. J. Exp. Mar. Biol. Ecol. 109: 39-51 (1987).
- [4] D.A. Ritz, M.E. Lewis, Ma Shen, Response to organic enrichment of infaunal macrobenthic communities under salmonid seacages. Marine Ecology 103: 211-214 (1989).
- [5] GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA N. 11 DEL 25-05-1992, suppl. ord., 1992.
- [6] E.F. Hartree, *Determination of proteins; a modification of Lowry method that gives a linear photometric response*. Anal. Biochem. 48: 422-428 (1972).
- [7] E.G. Bligh, W. Dyer, *A rapid method for total lipid extraction and purification*. Can. J. Biochem. Physiol. 37: 911-917 (1959).
- [8] M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers., F. Smith, *Colorimetric method for determination of sugars and related substances*. Analyt. Chem. 28: 350-356 (1956).
- [9] N. VILLANO, R.M. WARWICK, Meiobenthic communities associated with the seasonal cycle of growth and decay of Ulva rigida Agardh in the Palude Della Rosa, Lagoon of Venice. Estuarine, Coastal and Shelf Science, 41: 181-194 (1995).
- [10] P.J.P Santos, J. Castel, L.P. Souza-Santos, Seasonal variability of meiofaunal abundance in the oligo-mesohaline area of the Gironde Estuary, France. Estuarine, Coastal and Shelf Science 43: 549-563 (1996).
- [11] S.A. NETTO, R.M. WARWICK, M.J. ATTRILL, Meiobenthic and macrobenthic community structure in carbonate sediments of Rocas Atoll (north-east Brazil). Estuarine, Coastal and Shelf Science, 48: 39-50 (1999).
- [12] A. Chao, Nonparametric estimator of the number of classes in a population. Scandinavian J, Stat. 11: 265-270 (1984).
- [13] E. Olafsson, R. Elmgren, Seasonal dynamics of sublittoral meiobenthos in relation to phytoplankton sedimentation in the Baltic Sea. Estuarine, Coastal and Shelf Science, 45: 149-164 (1997).
- [14] S. Khera, N. Randhawa, Benthic nematodes as indicators of water pollution. Res.Bull. Panjab Univ. Sci. 36: 401-403 (1985).
- [15] R.M. Warwick, *The effects of organic enrichment on the benthic meio- and microfauna, with particular reference to fish farming in Scottish sea lochs*. A report to Scottish natural heritage, Plymouth Marine Laboratory (1992).
- [16] R. Brewer, Principi di Ecologia. Piccin Nuova Libraria S.p.a., Padova (1986).
- [17] M. Huston, A general hypothesis of species diversity. Am. Nat. 113: 81-101 (1979).

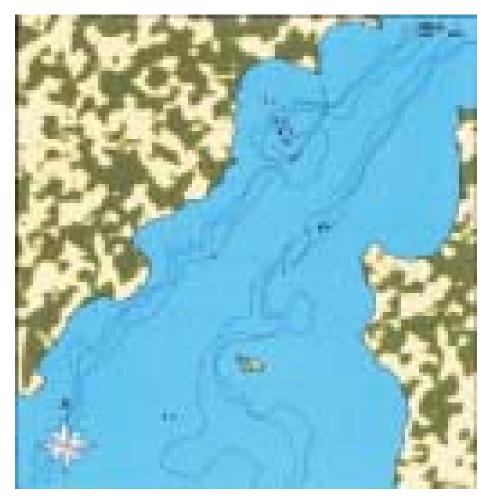


Figura 1. Baia di Figari - Stazioni di campionamento e limiti dell'impianto.

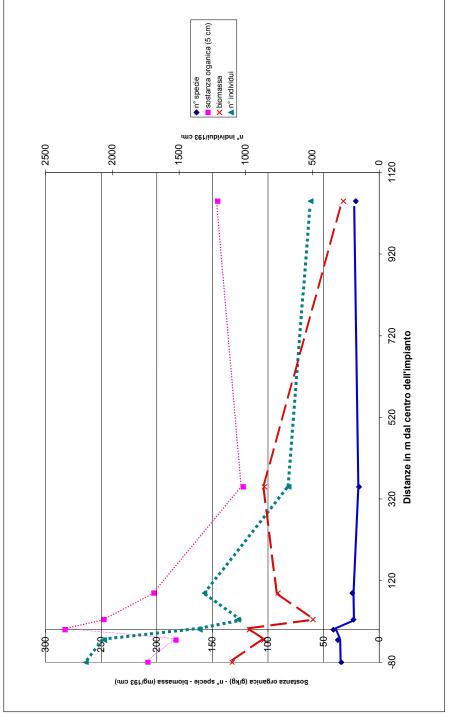


Figura 2. Sostanza organica, meiofauna - specie, individui e biomasse.

 $\label{lem:continuous} \textbf{Tabella 1. Materiale organico ed inorganico in sedimentazione (g/mq/giorno) raccolto dalle trappole.}$

Stazioni	TSM	POM	TIM
1	62,832	16,548	46,284
2	35,398	2,566	18,432
3	119,026	19,051	99,975
4	12,389	5,088	7,301
5	18,009	4,956	13,053
6	68,318	22,920	45,398
7	13,186	2,478	10,708

 $Tabella\,2.\,Componenti\,biochimici\,del\,materiale\,organico\,in\,sedimentazione\,(mg/mq/giorno).$

Stazioni	Proteine	Lipidi	Carboidrati	Totale
1	2027,28	1288,80	12136,08	15453,16
2	270,00	264,72	1998,48	2535,20
3	3188,64	1197,12	13758,48	18147,24
4	872,64	65,28	4041,36	4983,28
5	1123,20	737,52	2882,64	4748,36
6	3107,65	2315,64	14149,95	19579,23
7	770,64	186,24	1229,28	2193,16

Tabella 3. Caratteristiche dei sedimenti (g/kg d.w.).

Staz. 1

cm	Sost. organica	Ceneri	P tot.	N tot.
1°	184,9	815,1	1,919	7,102
2°+3°	243,8	756,2	1,814	1,653
4°+5°	183,6	816,4	1,232	0,772

Staz. 2

cm	Sost. organica	Ceneri	P tot.	N tot.
1°	149,5	850,5	2,896	1,540
2°+3°	220,3	987,7	2,776	0,493
4°+5°	178,3	921,7	2,699	0,419

Staz. 3

cm	Sost. organica	Ceneri	P tot.	N tot.
1°	383,5	616,5	6,403	2,880
2°+3°	391,3	608,7	3,676	1,340
4+5°	245,7	754,3	2,463	0,805

Staz. 4

cm	Sost. organica	Ceneri	P tot.	N tot.
1°	260,0	740,0	2,041	9,510
2°+3°	268,3	731,7	2,415	3,095
4°+5°	220,1	779,9	1,215	1,060

Staz. 5

cm	Sost. organica	Ceneri	P tot.	N tot.
1°	122,0	878,0	4,000	10,275
2°+3°	189,7	810,3	1,125	9,650
4°+5°	255,6	744,4	1,411	0,615

Staz. 6

cm	Sost. organica	Ceneri	P tot.	N tot.
1°	204,0	796,0	1,665	19,959
2°+3°	108,0	892,0	1,020	11,964
4°+5°	95,6	904,4	0,929	4,132

Staz. 7

cm	Sost. organica	Ceneri	P tot.	N tot.
1°	232,5	767,5	0,902	1,765
2°+3°	152,7	847,3	0,102	0,945
4°+5°	94,1	905,9	0,156	0,915

Tabella 4. Meiofauna - n° individui/193 cm³.

Taxa/stazione	1	2	3	4	5	6	7
Chinorinchi							
Echinoderes sp.	15	4	5	5	7	2	11
Nematodi	1706	1680	841	751	757	351	307
Policheti							
Brania oculata		37	4				2
Typosyllis glarearia	1		1				
Spherosyllis sp.		1					
Sillide n.d.	61	82	90	105	83	34	18
Dorvillea sp.	14	16	68	20	12	18	1
Pusillotrocha akessoni	2	2	1				
Dorvilleide n.d.	107	92	124	38	72	58	32
Nerillide n.d.		7	4	1			
Trilobodrilus axi			1				
Dinofilide n.d.		1					
Questa media			1				
Schroederella paulani	3	1		2	16		31
Polygordius sp.	4						
Pisione sp.	1						
Polichete n.d.	2	4	1	2			
Totale Policheti	195	243	295	168	183	110	84
Gasteropodi	1	3	2		1		2
Ostracodi							
Asterope mariae		2	2	1			
Pontocypris trigonella	2	1			12	4	9
Loxoconcha impressa	5	2		1			1
Cytherois pusilla	9		11	5	4	1	
Cytherois fischeri	6	12	12	3	11	3	
Cytheropteron testudo			1				
Cytheropteron sp.			1				
Cyclocypris ovum					5	1	1
Cythere albomaculata				5			
Totale Ostracodi	22	17	27	15	32	9	11
Copepodi							
Harpacticus gracilis	117	42	54	27	125	69	37
Harpacticus sp.	29	7	23	7	13	3	4
Tisbe furcata	20	13	10	2	11	8	4
Tisbe sp.		3	2				1
Laophonte setosa		6	11	8	58	12	12

(segue)

Tabella 4 (seguito). Meiofauna - n° individui/193 cm³.

Tabella 5. Stazione 1 - meiofauna (ind./10 cm³).

Taxa/cm	0,5	0,5-1	1-2	2-4	4-6
Chinorinchi	0,0	0,0 1		2 7	40
Echinoderes sp.	1,9	_	1,2	1,1	0.7
Totale Chinorinchi	1,9	-	1,2	1,1	0,7
Nematodi	33,5	54,6	74,0	159,9	47,0
Policheti	33,3	34,0	177,0	100,0	77,0
Typosyllis glarearia	-	_	_	0,2	
Sillide n.d.		6,2	3,7	4,5	1,5
Dorvillea sp.	1,9	0,6	2,1	0,5	1,0
Pusillotrocha akessoni	-	-	0,6	-	_
Dorvilleide n.d.	13,7	6,2	8,0	5,5	2,2
Schroederella paulani	-	0,2	-	0,5	2,2
		2,5			
Polygordius sp.	-	2,5		0,2	-
Pisione sp.				0,2	-
Polichete n.d.	0,6	- 4E E	0,3	44.4	2.7
Totale Policheti	16,2	15,5	14,7	11,4	3,7
Gasteropodi	-	-	-	0,2	-
Ostracodi	1.0	1	1	l	l
Pontocypris trigonella	1,2	-	-	-	-
Loxoconcha impressa	-	0,6	1,2	-	- 0.7
Cytherois pusilla	0,6	1,2	0,3	-	0,7
Cytherois fischeri		-	-	0,9	-
Totale Ostracodi	1,8	1,8	1,5	0,9	0,7
Copepodi					
Harpacticus gracilis	41,6	11,8	3,4	2,3	0,7
Harpacticus sp.	7,5	1,2	1,9	1,4	-
Tisbe furcata	9,3	1,2	0,9	-	-
Laophonte setosa	-	-	2,5	-	-
Cletocamptus confluens	14,3	1,9	-	0,3	-
Canuella perplexa	2,5	1,2	-	-	-
Tachiudius discipes	1,9	1,9	-	-	-
Oithona nana	1,9	-	-	-	-
Naupli	1,2	2,5	1,6	0,5	-
Totale Copepodi	80,2	21,7	10,3	4,5	0,7
Cumacei					
Nannastacus inflatus	0,6	-	-	-	-
Totale Cumacei	0,6	-	-	-	-
Tanaidacei					
Apseudes spinosus	0,6	-	-	-	-
Totale Tanaidacei	0,6	-	-	-	-
Isopodi	0,6	-	-	-	-
Anfipodi					
Atylus guttatus	2,5	0,6	0,3	-	-
Urothoe elegans	0,6	-	-	-	-
Ampelisca spinifer	0,6	-	-	-	-
Amphilochus neapolitanus	1,3	-	-	-	-
Maera grossimana	1,9	-	-	-	-
Caprella acutifrons	-	0,6	-	0,2	-
Anfipode n.d.	1,0	0,6	-	0,3	-
Totale Anfipodi	7,9	1,8	0,3	0,5	-
Acari	-	-	-	0,2	-
Totale	143,3	95,4	102,0	178,7	52,8

Tabella 6. Stazione 2 - meiofauna (ind./10 cm³).

Taxa/cm	0-0,5	0,5-1	1-2	2-4	4-6
Chinorinchi	0-0,0	0,0-1	1-2	~-4	,v
Echinoderes sp.	_	1,2	0,6	_	
Totale Chinorinchi	-	1,2	0,6	-	_
Nematodi	23,0	69,0	90,2	85,1	108,8
Policheti	20,0	00,0	00,2	55,1	100,0
Brania oculata	_	_	6,0	2,1	0,7
Spherosyllis sp.		_	0,3		-
Sillide n.d.	3,7	10,6	5,0	4,1	2,6
Dorvillea sp.	2,5	1,9	0,3	-	1,3
Pusillotrocha akessoni	1,2	-	- 0,0	_	-
Dorvilleide n.d.	4,3	5,6	5,3	8,3	0,8
Nerillide n.d.	4,3			-	-
Dinofilide n.d.	-	-	0,3	-	-
Schroederella paulani	_	-	0,3	_	-
Polichete n.d.	-	-	1,2	_	_
Totale Policheti	16,0	18,1	18,7	14,5	5,4
Gasteropodi	-	1,9	-	-	-
Ostracodi		.,,0	I		
Asterope mariae	0,6	_	0,3	_	_
Pontocypris trigonella	0,6	_	-		
Loxoconcha impressa	-	1,2	_	_	
Cytherois fischeri	_	4,3	1,6	_	_
Totale Ostracodi	1,2	5,5	1,9	_	-
Copepodi	,-	0,0	1,0		
Harpacticus gracilis	8,7	3,7	1,6	_	2,6
Harpacticus sp.	1,2	0,6	- 1,0	_	0.7
Tisbe furcata	6,2	1,9	-	_	-
Tisbe sp.	1,2	0,6	_	_	_
Laophonte setosa	-	2,5	0,6	_	_
Echinolaophonte horrida	1,2	-		_	_
Cletocamptus confluens	0,6	-	_	_	_
Tachiudius discipes	1,9	-	_		_
Diarthrodes major	1,9	-	0,3	_	_
Cylindropsyllus sp.	-	0,6	-	_	-
Oithona nana		1,2	_		-
Acartia bifilosa	0,6	-	_		-
Naupli Acarda billiosa	0,6	1,9	0,6	-	-
Totale Copepodi	24,1	13,0	3,1		3,3
Cumacei		1.5,0	, T		0,0
Nannastacus inflatus	0,6	_	_	_	
Totale Cumacei	0,6	-	_	-	-
Tanaidacei	0,0				
Heterotanais oestedi	1,2	_	_	_	-
Leptognathidae n.d.		0,6	_	_	_
Tanaidaceo n.d.	0,6	-	_	_	-
Totale Tanaidacei	1,8	0,6	_		-
Anfipodi	.,0		l .		
Atylus guttatus	0,6	1,2	_	-	-
Caprella acutifrons	3,1	0,6	0,3	_	-
Stenothoe sp.	-	0,6	-	_	-
Anfipode n.d.	0,6	-	-	-	-
Totale Anfipodi	4,3	2,4	0,3	-	-
Acari	0,6	0,6	-	-	-
Totale	71,6	112,3	114,8	99,6	117,5
iotaio	,0		, .		, .

Tabella 7. Stazione 3 - meiofauna (ind./10 cm³).

Taxa/cm	0-0,5	0,5-1	1-2	2-4	4-6
Chinorinchi	0-0,5	0,5-1	1-2	2-4	4-0
Echinoderes sp.		1,2	_	0,5	
Totale Chinorinchi		1,2		0,5	-
Nematodi	27,3	64,6	94,1	38,9	22,0
Policheti	27,0	0 1,0	0 1,1	00,0	22,0
Brania oculata		2,5	_	-	
Typosyllis glarearia	0,6	-	_	-	
Sillide n.d.	13,0	19,9	4,8	2,9	0,5
Dorvillea sp.	1,9	9,9	1,9	5,8	1,4
Pusillotrocha akessoni	-	0,6	-	-	-
Dorvilleide n.d.	26.7	26,7	7,1	1,0	1,4
Nerillide n.d.	2,5	-	-	-	-
Trilobodrilus axi	0,6	-	-	-	-
Questa media	0,6	-	-	-	-
Polichete n.d.	-	0,6	-	-	-
Totale Policheti	45,9	60,2	13,8	9,7	3,3
Gasteropodi	-	1,2	-	-	-
Ostracodi					
Asterope mariae	0,6	0,6	-	-	-
Cytherois pusilla	-	2,5	1,2	0,5	-
Cytherois fischeri	-	5,0	1,2	-	-
Cytheropteron testudo	-	0,6	-	-	-
Cytheropteron sp.	-	0,6	-	-	-
Totale Ostracodi	0,6	9,3	2,4	0,5	-
Copepodi					
Harpacticus gracilis	18,0	15,5	-	-	-
Harpacticus sp.	5,6	6,2	1,2	-	-
Tisbe furcata	6,2	-	-	-	-
Tisbe sp.	0,6	0,6	-	-	-
Laophonte setosa	-	4,3	1,2	-	-
Echinolaophonte horrida	0,6	-	-	-	-
Cletocamptus confluens	1,2	3,1	-	-	-
Canuella perplexa	2,5	-	-	0,5	-
Tachiudius discipes	1,9	0,6	-	-	-
Metis ignea	0,6	-	-	-	-
Cylindropsyllus sp.		0,6	-	-	-
Oithona nana	-	7,5	-	-	-
Halicyclops sp.	-	0,6	-	-	-
Paracalanus parvus	0,6	-	-	-	-
Acartia bifilosa	0,6	0,6	- 4.0	-	-
Naupli Totala Cananadi	7,5	3,7	1,2	-	-
Totale Copepodi Cumacei	45,9	43,3	3,6	0,5	-
Nannastacus inflatus		0,6	-	-	_
Totale Cumacei		0,6	-	-	-
Tanaidacei		0,0	_	_	
Tanaidaceo n.d.		0,6	_	-	
Totale Tanaidacei		0,6	_	_	
Anfipodi					
Leucothoe richiardii	0,6	-	_	-	
Caprella acutifrons	-	1,2	-	0,5	-
Stenothoe sp.	-	0,6	-	-	-
Perioculodes longimanus	-	0,6	-	-	-
Anfipode n.d.	-	0,6	-	-	-
Totale Anfipodi	0,6	3,0	-	0,5	-
Acari	1,2	-	-	-	-
Sipunculidi					
Phascolion sp.	ı	0,6	-	-	-
Totale	121,5	184,6	113,9	50,6	25,3

Tabella 8. Stazione 4 - meiofauna (ind./10 cm³).

Taxa/cm	0-0,5	0,5-1	1-2	2-4	4-6
Chinorinchi	,				
Echinoderes sp.	0,6	0,6	-	0,5	-
Totale Chinorinchi	0,6	0,6	-	0,5	-
Nematodi	39,1	66,4	46,1	43,5	24,0
Policheti					•
Sillide n.d.	41,6	6,2	4,9	0,9	1,0
Dorvillea sp.	2,5	4,3	2,4	-	-
Dorvilleide n.d.	6,8	4,3	2,4	1,4	0,5
Nerillide n.d.	0,6	-	-	-	-
Schroederella paulani	0,6	0,6	-	-	-
Polichete n.d.	0,6	0,6	-	-	-
Totale Policheti	52,7	16,0	9,7	2,3	1,5
Ostracodi					
Asterope mariae	0,6	-	-	-	-
Loxoconcha impressa	0,6	1	-	-	-
Cytherois pusilla	0,6	-	1,2	-	-
Cytherois fischeri	1,9	-	-	-	-
Cythere albomaculata	0,6	-	1,2	-	-
Totale Ostracodi	4,3	-	2,4	-	-
Copepodi					-
Harpacticus gracilis	10,6	1,9	1,2	0,5	-
Harpacticus sp.	3,7	0,6	-	-	-
Tisbe furcata	1,2	1	-	-	-
Laophonte setosa	4,3	0,6	-	-	-
Laophonte sp.	0,6	-	-	-	-
Cletocamptus confluens	0,0	ı	1,2	-	-
Canuella perplexa	1,9	-	-	-	-
Oithona nana	14,3	1,2	3,6	2,3	-
Paracalanus parvus	0,6	-	-	-	-
Naupli	4,3	1,9	-	-	-
Totale Copepodi	41,5	6,2	6,0	2,8	-
Anfipodi				·	
Caprella acutifrons	0,6	0,6	-	-	-
Stenothoe sp.	0,6	-	-	-	-
Totale Anfipodi	1,2	0,6	-	-	-
Totale	139,4	89,8	64,2	49,1	25,5

Tabella 9. Stazione 5 - meiofauna (ind./10 $\,\mathrm{cm^3}$).

Taxa/cm	0-0,5	0,5-1	1-2	2-4	4-6
Chinorinchi	ĺ	,			
Echinoderes sp.	2,5	1,9	-	-	-
Totale Chinorinchi	2,5	1,9	-	-	-
Nematodi	59,0	47,2	50,1	20,3	17,7
Policheti	,		· · · · · ·	· · · · · ·	,
Sillide n.d.	10,6	7,5	8,7	4,1	_
Dorvillea sp.	1,9	1,9	1,1	-	-
Dorvilleide n.d.	5,6	5,0	10,9	2,4	0,7
Schroederella paulani	2,5	5,0	1,1	-	-
Totale Policheti	20,6	19,4	21,8	6,5	0,7
Gasteropodi	0,6	-	-	-	-
Ostracodi		•			
Pontocypris trigonella	0,6	4,3	-	-	-
Cytherois pusilla	-	-	-	-	0,6
Cytherois fischeri	4,3	-	1,1	-	-
Cyclocypris ovum	2,5	0,6	1,1	-	-
Totale Ostracodi	7,4	4,9	2,2	-	0,6
Copepodi					
Harpacticus gracilis	19,9	11,2	9,8	3,2	-
Harpacticus sp.	8,1	6,2	1,1	-	-
Tisbe furcata	5,0	-	-	-	-
Laophonte setosa	9,3	6,8	4,3	3,2	0,7
Canuella perplexa	4,3	5,6	1,1	1,6	0,0
Diarthrodes major	1,9	2,5	-	0,8	0,7
Oithona nana	3,1	8,1	-	-	-
Acartia bifilosa	-	1,2	1,1	-	-
Naupli	10,6	6,8	-	-	-
Totale Copepodi	62,2	48,4	17,4	8,8	1,4
Anfipodi					
Atylus guttatus	1,9	-	-	-	-
Stenothoe sp.	0,6	0,6	-	-	-
Hyale sp.	0,6		-	-	-
Anfipode n.d.	-	0,6	-	-	-
Totale Anfipodi	3,1	1,2	-	-	-
Acari	1,2	0,6	-	0,8	-
Sipunculidi					
Sipunculide n.d.	-	-	1,1	-	-
Totale	156,6	123,6	92,6	36,4	20,4

Tabella 10. Stazione 6 - meiofauna (ind./10 cm³).

Taxa/cm	0-0,5	0,5-1	1-2	2-4	4-6
Chinorinchi		•			•
Echinoderes sp.	0,6	0,6	_	-	-
Totale Chinorinchi	0,6	0,6	-	-	-
Nematodi	28,6	31,1	43,5	13,8	4,3
Policheti			•		!
Sillide n.d.	5,0	3,1	4,3	1,1	-
Dorvillea sp.	3,1	3,7	2,2	-	-
Dorvilleide n.d.	7,4	2,5	7,6	1,6	0,7
Totale Policheti	15,5	9,3	14,1	2,7	0,7
Ostracodi		•			
Pontocypris trigonella	-	2,5	-	_	-
Cytherois pusilla	0,6	-	-	-	-
Cytherois fischeri	1,9	-	-	-	-
Cyclocypris ovum	0,6	-	-	-	-
Totale Ostracodi	3,1	2,5	-	-	-
Copepodi		•			
Harpacticus gracilis	13,7	2,5	7,5	2,1	0,7
Harpacticus sp.	1,9	-	-	-	-
Tisbe furcata	1,9	0,6	1,1	-	-
Laophonte setosa	3,1	1,2	-	-	0,7
Laophonte sp.	3,1	-	-	-	-
Canuella perplexa	1,2	3,1	-	0,5	-
Oithona nana	1,9	1,2	1,1	-	-
Naupli	1,2	2,5	-	-	-
Totale Copepodi	28,0	11,1	9,7	2,6	1,4
Tanaidacei			-		
Leptognathidae n.d.	18,6	3,7	4,4	2,7	5,7
Totale Tanaidacei	18,6	3,7	4,4	2,7	5,7
Anfipodi					
Caprella acutifrons	1,2	-	-	-	-
Totale Anfipodi	1,2	-	-	-	-
Acari	0,6	-	-	-	-
Totale	96,2	58,3	71,7	21,8	12,1

Tabella 11. Stazione 7 - meiofauna (ind./10 $\,\mathrm{cm^3}$).

Taxa/cm	0-0,5	0,5-1	1-2	2-4	4-6
Chinorinchi	,				
Echinoderes sp.	0,6	1,2	2,6	-	-
Totale Chinorinchi	0,6	1,2	2,6	-	-
Nematodi	20,0	6,8	18,3	13,1	18,9
Policheti		!			
Brania oculata	-	1,2	_	-	-
Sillide n.d.	2,5	1,9	-	1,8	-
Dorvillea sp.	-	0,6	-	-	-
Dorvilleide n.d.	1,2	1,2	3,9	2,4	-
Schroederella paulani	7,5	1,9	2,6	1,2	-
Totale Policheti	11,2	6,8	6,5	5,4	-
Gasteropodi	0,6	-	-	-	-
Ostracodi		•			
Pontocypris trigonella	0,6	1,9	-	-	0,8
Loxoconcha impressa	0,6	-	-	-	-
Cyclocypris ovum	0,6	-	-	-	-
Totale Ostracodi	1,8	1,9	-	-	0,8
Copepodi					
Harpacticus gracilis	5,6	1,2	1,3	1,8	1,6
Harpacticus sp.	-	-	1,3	-	-
Tisbe furcata	-	-	1,3	ı	-
Tisbe sp.	-	0,6	-	1	-
Laophonte setosa	-	0,6	-	1	1,6
Echinolaophonte horrida	1,9	0,6	-	1	-
Canuella perplexa	1,2	-	-	1	-
Oithona nana	0,6	4,3	-	-	-
Acartia bifilosa	0,6	-	-	-	-
Naupli	6,2	2,5	-	1,2	-
Totale Copepodi	16,1	9,8	3,9	3,0	3,2
Isopodi	-	0,6	-	-	-
Acari	0,6	0,6	-	-	-
Totale	50,9	27,7	31,3	21,5	22,9

Tabella 12. Meiofauna - $n^{\circ}\,di$ specie e di individui.

	Gasteropodi	1-1	1-3	1-2		1-1		1-2
	Acari	1-1	1-2	1-2		1-8	1-1	1-1
	Sipunculidi			1-1		1 - 4		1-1
	Chinorinchi	1 - 15	1 - 4	1 - 5	1 - 5	1 - 7	1 - 2	1-11
vidui	Cumacei	1-1	1-1	1 - 1				
n° specie - n° individui	Tanaidacei	2 - 4	3 - 4	1-1			1 - 76	
	Isopodi	1-1						
	Anfipodi	7 - 19	4 - 12	6 - 9	2-3	4 - 7	1-2	
	Copepodi	7 - 231	12 - 92	15 - 159	9 - 115	8 - 309	7 - 126	6 - 95
	Ostracodi	4 - 22	4 - 17	5 - 27	5 - 15	4 - 32	4 - 9	3 - 11
	Policheti	9 - 195	10 - 243	10 - 295	6 - 168	4 - 183	3 - 110	5 - 84
	Nematodi	1706	1680	841	751	757	351	307
n° individui	tot.	2196	2058	1343	1057	1308	229	512
n° specie		34	37	41	23	24	18	21
Stazioni		-	2	3	4	5	9	7

Tabella 13. Meiofauna - Incidenza percentuale dei vari Gruppi.

Tabella 14. Meiofauna - Biomassa mg w.w./193 $\,\mathrm{cm^3}$.

Taxa/stazione	1	2	3	4	5	6	7
Chinorinchi							
Echinoderes sp.	0,540	0,144	0,180	0,180	0,252	0,072	0,396
Nematodi	1,697	1,730	1,136	1,008	0,094	0,558	0,355
Policheti							
Brania oculata		11,100	1,200				0,600
Typosyllis glarearia	0,300		0,300				
Spherosyllis sp.		0,300					
Sillide n.d.	18,300	24,600	27,000	31,500	24,900	10,200	5,400
Dorvillea sp.	4,200	4,800	20,400	6,000	3,600	5,400	0,300
Pusillotrocha akessoni	0,600	0,600	0,300				
Dorvilleide n.d.	32,100	27,600	37,200	11,400	21,600	17,400	9,600
Nerillide n.d.		2,100	1,200	0,300			
Trilobodrilus axi			0,300				
Dinofilide n.d.		0,300					
Questa media			0,300				
Schroederella paulani	0,900	0,300		0,600	4,800		9,300
Polygordius sp.	1,200						
Pisione sp.	0,300						
Polichete n.d.	0,600	1,200	0,300	0,600			
Totale Policheti	58,500	72,900	88,500	50,400	54,900	33,000	25,200
Gasteropodi	0,300	0,900	0,600		0,300		0,300
Ostracodi							
Asterope mariae		0,080	0,080	0,047			
Pontocypris trigonella	0,094	0,040			0,574	0,188	0,423
Loxoconcha impressa	0,225	0,090		0,045			0,045
Cytherois pusilla	0,423		0,440	0,235	0,188	0,047	
Cytherois fischeri	0,282	0,480	0,480	0,141	0,517	0,141	
Cytheropteron testudo			0,040				
Cytheropteron sp.			0,040				
Cyclocypris ovum					0,235	0,047	0,047
Cythere albomaculata				0,250			
Totale Ostracodi	1,024	0,690	1,080	0,718	1,514	0,423	0,515
Copepodi							
Harpacticus gracilis	6,903	2,478	3,186	1,593	7,375	4,071	2,183
Harpacticus sp.	1,711	0,252	0,828	0,413	0,767	0,177	0,236
Tisbe furcata	1,000	0,650	0,500	0,100	0,550	0,400	0,200
Tisbe sp.		0,108	0,072				0,050
Laophonte setosa		0,216	0,396	0,288	2,088	0,432	0,432
Laophonte sp.				0,036		0,180	

(segue)

Tabella 14 (seguito). Meiofauna - Biomassa mg w.w./193 $\,\mathrm{cm^3}$.

Taxa/stazione	1	2	3	4	5	6	7
Echinolaophonte horrida		0,072	0,036				0,144
Cletocamptus confluens	1,296	0,072	0,252	0,144			
Canuella perplexa	0,354		0,413	0,177	1,888	0,826	0,118
Tachiudius discipes	0,216	0,108	0,144				
Metis ignea			0,036				
Diarthrodes major		0,144			0,576		
Cylindropsyllus sp.		0,036	0,036				
Oithona nana	0,108	0,072	0,432	1,872	0,648	0,324	0,288
Halicyclops sp.			0,026				
Paracalanus parvus			0,036	0,036			
Acartia bifilosa		0,009	0,018		0,288		0,036
Naupli	0,002	0,001	0,005	0,002	0,007	0,001	0,004
Totale Copepodi	12,590	6,218	9,416	8,661	19,187	12,411	10,691
Cumacei							
Nannastacus inflatus	1,250	1,250	1,250				
Tanaidacei							
Heterotanais oestedi		1,600					
Apseudes spinosus	0,800						
Leptognathidae n.d.	2,400	0,800				60,800	
Tanaidaceo n.d.		0,800	0,800				
Totale Tanaidacei	3,200	3,200	0,800			60,800	
Isopodi	0,300						
Anfipodi							
Leucothoe richiardii			5,000				
Atylus guttatus	17,400	8,700			8,700		
Urothoe elegans	2,900						
Ampelisca spinifer	5,000						
Amphilochus neapolitanus	5,800						
Maera grossimana	8,700						
Caprella acutifrons	1,600	5,600	4,000	1,600		1,600	
Stenothoe sp.		0,800	0,800	0,800	1,600		
Perioculodes longimanus			2,900				
Hyale sp.					2,900		
Anfipode n.d.	11,600	2,900	2,900		2,900		
Totale Anfipodi	53,000	18,000	15,600	2,400	16,100	1,600	
Acari	0,300	0,600	0,600		2,400	0,300	0,600
Sipunculidi							
Phascolion sp.			0,300				0,300
Sipunculide n.d.					1,200		
Totale Sipunculidi			0,300		1,200		0,300
Totale	132,039	103,632	116,462	59,367	90,937	103,164	31,995